JARID2 Is Involved in Transforming Growth Factor-Beta-Induced Epithelial-Mesenchymal Transition of Lung and Colon Cancer Cell Lines
نویسندگان
چکیده
Histone methylation plays a crucial role in various biological and pathological processes including cancer development. In this study, we discovered that JARID2, an interacting component of Polycomb repressive complex-2 (PRC2) that catalyzes methylation of lysine 27 of histone H3 (H3K27), was involved in Transforming Growth Factor-beta (TGF-ß)-induced epithelial-mesenchymal transition (EMT) of A549 lung cancer cell line and HT29 colon cancer cell line. The expression of JARID2 was increased during TGF-ß-induced EMT of these cell lines and knockdown of JARID2 inhibited TGF-ß-induced morphological conversion of the cells associated with EMT. JARID2 knockdown itself had no effect in the expression of EMT-related genes but antagonized TGF-ß-dependent expression changes of EMT-related genes such as CDH1, ZEB family and microRNA-200 family. Chromatin immunoprecipitation assays showed that JARID2 was implicated in TGF-ß-induced transcriptional repression of CDH1 and microRNA-200 family genes through the regulation of histone H3 methylation and EZH2 occupancies on their regulatory regions. Our study demonstrated a novel role of JARID2 protein, which may control PRC2 recruitment and histone methylation during TGF-ß-induced EMT of lung and colon cancer cell lines.
منابع مشابه
MEG3 Long Noncoding RNA Contributes to the Epigenetic Regulation of Epithelial-Mesenchymal Transition in Lung Cancer Cell Lines.
Histone methylation is implicated in a number of biological and pathological processes, including cancer development. In this study, we investigated the molecular mechanism for the recruitment of Polycomb repressive complex-2 (PRC2) and its accessory component, JARID2, to chromatin, which regulates methylation of lysine 27 of histone H3 (H3K27), during epithelial-mesenchymal transition (EMT) of...
متن کاملAnalysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملNDRG2 Regulates the Expression of Genes Involved in Epithelial Mesenchymal Transition of Prostate Cancer Cells
Background: Metastasis is the main cause of prostate cancer (PCa) death. The inhibitory effect of N-myc downstream-regulated gene 2 (NDRG2) on the invasiveness properties of PCa cells has been demonstrated previously. However, its underlying mechanisms have not yet been investigated. The present study aimed to investigate the effects of NDRG2 overexpression on the expression of genes involved i...
متن کاملDifferential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype.
Transforming growth factor-beta (TGF-beta) induces epithelial-mesenchymal transition (EMT) of epithelial cells in both normal embryonic development and certain pathological contexts. Here, we show that TGF-beta induced-EMT in human lung cancer cells (A549; adenocarcinoma cells) mediates tumor cell migration and invasion phenotypes. To gain insights into molecular events during EMT, we employed ...
متن کاملOncogenic Ras and transforming growth factor-beta synergistically regulate AU-rich element-containing mRNAs during epithelial to mesenchymal transition.
Colon cancer progression is characterized by activating mutations in Ras and by the emergence of the tumor-promoting effects of transforming growth factor-beta (TGF-beta) signaling. Ras-inducible rat intestinal epithelial cells (RIE:iRas) undergo a well-described epithelial to mesenchymal transition and invasive phenotype in response to H-RasV12 expression and TGF-beta treatment, modeling tumor...
متن کامل